top of page

MTH 4320/5320 Neural Networks

Fall 2020

 

GitHub repository (notes, code, other information): https://github.com/rtwhite1546/Fall-2020-Neural-Networks

​

Fall 2021

​

GitHub repository (notes, code, other information): https://github.com/rtwhite1546/Fall-2021-Neural-Networks

 

​

References

​

Below are some recommended references I use in the course. They are all freely available online.

​

 

Recommended Books​

​

Michael Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

​

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

​

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer-Verlag, 2009. 

​

 

Videos

​

Grand Sanderson (3Blue1Brown). Deep Learning YouTube series (feedforward nets).

​

Andrew Ng. Machine Learning (Stanford course videos).

​

​

Websites

​

Fei-Fei Li and others. CS231 Convolutional Neural Networks for Visual Recognition (notes from a Stanford course)

Course: http://cs231n.stanford.edu/

GitHub: https://cs231n.github.io/

​

Chris Olah. colah's blog (great visualizations for neural nets).

​

Distill (great visualizations for neural nets).

 

Sebastian Ruder. An overview of gradient descent optimization algorithms.

​

​

bottom of page